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We present a new proof of Chorin’s quadrature formula for Wiener integrals. Numerical 
experiments show that the rate of convergence may not be quadratic, if the functional is not 
twice differentiable. 0 1987 Academic Press, Inc. 

The purpose of this paper is to present a simple derivation of Chorin’s [3] 
quadrature formula for Wiener Integrals. 

The solution of the heat equation can be written as a Wiener integral. We can 
then compute the solution numerically by using Chorin’s formula (see [3]). The 
technique has been extended to stochastic Wiener integrals by Blankenship and 
Baras [ 11. Such integrals occur in the analysis of wave propagation in random 
media and in nonlinear filtering problems (see [ 11). Chorin’s formula may also find 
application in the calculation of the lowest eigenvalue of Schrodinger’s equation 
(see Donsker and Kac [4]) and in the study of self avoiding random walk (see 
Ma [7, p. 4001). 

Our presentation is based on two ideas. First, we use the Levy [6] interpolation 
formula and express the Brownian path as a sum of a piecewise linear function plus 
many small Brownian bridges. Here Chorin and Blankenship and Baras use 
piecewise constants plus many small Brownian paths. Second, we do not introduce 
extraneous variables only to eliminate them later by a change of variables. 

The solution of the heat equation with a potential 

2 

; 44 f) =;s u(x, t) + V(x) u(x, t), -~<X<<, 

44 0) =f(x) 

is given by the Feynman-Kac formula, (see, e.g., Freidlin [ 5, p. 1201) 

u(x, f)=s f(x+z(t))exp 
c 
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Here Wz is the Wiener measure in the space C[O, t] of continuous functions z with 
z(0) = 0. A special case of Chorin’s formula gives 

where 

z,=t u,+.. 
J( n .+u;-,++ , 

J) 
d~=(27C)~“‘2exp{-(u:+...+u;:~,+02)/2}du,...du,..,du. 

This result holds iffand V are smooth and bounded. In practice the integral should 
be evaluated using Monte Carlo and variance reduction (see [2]). We will prove 
the result for x = 0 and t = 1, but replace the exponential function by a smooth 
function G and set .f= 1. 

THEOREM (Chorin [3]). Let G and V be four times continuously differentiable and 
assume that V and its derivatives are bounded. Then 

jcG(ji V(X(t))dt)dW,=j~“G(~.~ V(zi))dp+O(ne2). 
i=l 

Warning. Here the Wiener measure satisfies J x2( 1) dW = 1. Chorin [3] takes 
j x*( 1) dW= f and this explains the difference in dp. 

Remark. The smoothness is crucial. Numerical experiments show that quadratic 
convergence fails if G(v) = u and V(x) = ( x 1’ with 0 < A< 2. The remainder in the 
theorem is less than 23KL4/n2. This can be shown by replacing the estimates in our 
proof by explicit bounds. Here L is the supremum over all x of 1 and 1 v”‘(x)\ for 
i = 0, 1, 2, 3, 4, and K is the maximum of 1 G(‘)(u)1 for i = 0, 1, 2, 3, 4, and 
inf., V(x) < u < sup, V(x). There are other formulas that gives quadratic con- 
vergence. Vent-tsel’, Gladyshev, and Mit’shteyn [S] has shown that if G is six times 
continuously differentiable and if V and its first four derivatives are continuous and 
bounded then 

’ V(X(t))dt)dWX=jRnG(i ,t ‘(“-‘)2+ v(ii))dfi+~(np2), 
r=l 

where 

2, = 0, i;=-(u, +...+u,), 
J;; 

d@=(2n)P”‘2exp(-(ui+...+u2)/2)du,...du,. 
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Proqf: We begin with Levy’s [6] representation of a Brownian path. Let 
h = I/n, t, = ih, and X, = X( t,). Let t, , <t<t,. Then s(t)=l,+h,, where 

t-t 
I,=s,,+(.u,--.u,,)+.‘.+(.‘i, ,-.Y, *)++(.Y)-.Yi ,), 

hi= yY(t)-.Y, ,)-q+-\.(f)). 

The Brownian bridge h, is independent of the linear interpolant I, and 

! h,dW=O, 
i^ 

h*dWJkw-~’ I) 
f f. I h ’ 

(1) 

j 
hj dW=O, 

s 
h:‘dW= O(h*). 

C‘ C’ 

We partition the inner integral as 

j’ v(r(t)) dt = i j” I’(/,) dt + i I” [I V(I, + h,) - VI,)] dt 
0 ,-I ‘z I ,=, ‘, / 

= 1 u, + c e, = u + e. 

I 

Here and later i runs through 1, 2,..., n. By using Taylor’s formula we get 

Z=i G(a+e)dW=C [G(a)+G’(a)e+$G”e*]dW 
<‘ C‘ 

= I, + I, + I,. 

We will show that I, = O(h’). Since G” is evaluated somewhere between a and u + c 
it can be bounded independently of X. We observe next that e* =C,ef +C,+,e,e,. 
Since e, = 1 V’h, dt it follows from Cauchy-Schwarz inequality and (1) that 

r’dW< 
i’ T(i 

I’ /I V/l I/?,( dt *dW 
C’ 1, , i 

a j”” /I I” /I* dt i“’ dt j” h’dW= O(h’). 
, ft I f, / C’ 

To evaluate the next term we expand V(I, + hi) in a Taylor series. Since h, is 
independent of I, and h, for i #.j and have zero mean we conclude that 
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Thus I, = 0(/r’). We will now compute I,. Since ?cO = 0 and the (xi-xi _ ,) are 
independent Gaussian variables with mean zero and variance h we have 

t-t,-, 
2,-u, +...+u, , +----24 

h I? 

dp’= (27~h)~ ,1!2exp(-(uf+...+u~)/2h)du, “.du,. 

We denote the argument of G in (2) by CL To compute Z, we expand V(1, + h,) in a 
Taylor series. Since G’ and v’, Y”, V”’ do not depend on hi and G’ and V”” are 
bounded it follows from (1) that 

1, = jr G’(a) 1 j,‘;, [ V I b,+; V”(i,)b:+t V”‘(/,)b,Y+& V”“b; dtdW ‘( i) 
I 8 1 

By combining (2) and (3) and changing the variable t to 9 = (t - tj ,)//I we. obtain 

I=jR,,[G(x)+G@)h t j’iv.(.,+...+~,~,+3u,)3(1-9)hd~]d~’+O(h2), 
I=’ 0 

M = h ,g, jc; V( u, + . . + u; _ , + lb,) d,9. 

Our next goal is to eliminate the 9 variable inside V”. Set A,;, = 1; - 9ui and denote 
I’().,),) by V,,,. Then Taylor’s formula yields 

J‘ 
’ 1 
- I”‘(&, + 9~;) 9( 1 - 9) h d,9 =A V:;, + 4 I”+, + hO(u;). 

0 2 

More generally we define A,,, by setting uj equal to zero in the expression for A,. 
Thus j”, , equals A, - U, for i <j and Ai for i>j. We denote V(L,,;) by V,,;. This 
notation reminds us that we have suppressed the U, variable in V. By expanding V 
in a Taylor series we see that 

a=hC 
i 

j1 V,,, dJ + [; I’;,,, + h 1 j’ V;,, d,9] u, 
0 ,>1 0 

+ ; I’:;, +; 1 j’ V,‘s;dY 
1 

Uf+u((u;13) 
/>I 0 (4) 
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We observe next that 

s 
14, dpl = 0, u’ d/i’ = h, 

I 
11: d/i = 0, / /A,(“’ d/l’ = O(h”‘:2). (5) 

Expanding G’ around LX, and noting that CC,, p,, and j.,, do not depend on u,, WC 
conclude from (5) that 

il,. G’(a) I,: 
$ V”(U, +...+u, , + :Su,) 9( I - 9) h d,Y dg’ 

” = 
! 

[G: + G:‘piu, + 0(1/f)] 
8” i 

$ I’:‘, +A V’;,u, + hO(u;) 

zz 
i 

!- G; V;,d/i + O(h’), 
. ,<” 12 

where G, = G(cx,). By inserting this result in the previous expression for 

[= r 
J i 

G( 3) + h ,;, ; G: I’;, 
1 

dp” + O(h’) 
:4-8” I 

4’ 

I we have 

d/l“ = (27th) “‘+“‘exp(-(uf+~~~+u~+~~“)/2h)~fu,~~~rlu,,cl~. 

Here we have introduced a dummy variable z: and a new measure L&“. We shall 
replace (h/12) V” by an approximation, which is good in the weak sense but bad in 
the absolute value sense. Expanding V around i., , and integrating with respect to 9 
we find that 

pr=/I~j:[Y(u,+...+i4, j-V(zi,+-+u, I +-- , + 924, ) d,Y 
’ 

vi j 
4: / v !( 3-7 1: 4) sv ,,(“’ 4-6 4) sv ,!,( 2 u:)+o(I>4+.:,l -Q-j-j (6) 

where V’, I/“, V”’ are evaluated at i “,:, = 14, + + u, , We remark that /j - x is not 
a small quantity. The reason is that c’ is independent of the u,‘s. But j / /I - LY / is of 

order ,,/z, while j /Y - CI is roughly h C (h/12) V” because the integrals of the odd 
terms vanish. All integrations in the following are over R” + ‘. The domain of 
integration will therefore not be mentioned explicitly. We now expand G’ around 
sli, use (4), (5) and (6) and get 

G’+G”p,u,+ G”y,+;Gft’p’ uf+O(Iu,I’+uf) (/j-ct)dp” 
I 
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where G’, G”, G”’ are evaluated at xi. We may therefore replace h C (h/12) V” by 
[I-r. More precisely, if we combine the last result with the expression for I we 
obtain 

I= G(cx)+G’(u)(/i-x)+h i ;G;‘p;V:/, 1 d/L" + U( h'). I: I 
The first two terms in this equation are the leading terms in the Taylor expansion of 
G(P). Since [S does not depend on u,, we can suppress this variable. After changing 
the variables u, and v to u, ‘$ and L)‘$ and dropping the ‘primes we see that 
1 G(P) L/P” is Chorin’s approximation to the Wiener integral. Chorin’s quadrature 
formula is therefore first order accurate. To complete the proof we must show that 
the remainder is 0(/z’). Using the first live terms in the Taylor series for G(,O) we see 
that the remainder is 

I[ = 
h “(;:‘p,v~,,-~(;.f(1)(/1-1)‘-~G’..(?)(li-n)3-O(lia)4 dp” 

I 2 1 
=R,-Rz-R,-Rq. (7) 

We shall show that R, and Rz cancel, and that Rx and R, are of order h2. To 
estimate the last term is easy. It follows from (6) that fl- CI is O( I u I + h C ( u, I ). 
Since (CI + h)4 < 8(a4 + h”) and (h 1 1 u, 1 )4 < h C UP we find from (5) that 

i 
I~-r14&“<const. 8 u4+hxup dp”=O(h’). 

1’( , > 

Thus R, = O(h’). We will now attack R,. It follows from the derivation of (6) that 

where L’ = (hi,,/?) C VI,,, and d= (h/2) 1 ViP,u,. But co-d is of order (tl’ + h C uf)‘!’ 
and consequently 

We multiply both sides of this equation by G”‘(a) and integrate with respect to dp”. 
The contribution from the last two terms will be O(h2 + h3) since G”’ is bounded. 
The terms with u3 and L’ vanish after integration because G”‘, c, dare independent of 
1’. To compute j G”‘c’u”d we use Taylor’s formula to suppress the ui dependence in L 
and obtain 

r G”‘(r) czv2d d,u” 

G:” + o(Ui)] k C V,‘,jl+ O(U,) ’ hV:/,ui dp” = 0 + 0(/t*). 
I $1 1 

58116912.14 
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We observe next that 

1 G”‘(ol)d3 d/J’=; 1 1 G”‘(a) V;,V;.i,V;A~,~,~I d/i”. 
,,i.k 

If i=,j=k we use (4) and get 

I [G:” + O(U,)](~‘.,)~ u;‘dp” = O(h’). 

Otherwise one of the indices must differ from the other two, say i#.j and i # li. 
Then 

i‘ [G:” + O(u,)] I’:.,;[ I’;:,, + O(q)] [ Vilk, + O(u,)] u,u,u/, dp” = O(h’). 

We can therefore conclude that j G”‘d3 is of order h2 and it follows that R, = O(h’). 
To compute R, in (7) we go back to (6) and write 

[I-cx=c,z:-d, +czu’-dz+O (~[~+hx Iu,13 , 
( > 

where (‘, = c and d, = d. Consequently 

(b-x)2=cfuz+d:+2(- c,ud, +c,c,v’-c202d, -c,ud, +d,d,) 

We multiply both sides of this equation by tG”(a) and integrate with respect to dp”. 
The terms with u and u3 vanish after integration. The treatment of c2u2 d, and d,d, 

is similar to the previous discussion of c’ud and d’, and the bounds are of order h2. 

We observe next that 

j G”(u) d;dp” =f$ [ G”(r)( I’;/,)’ uf d/i” 
I 

+; c j G”(u) I’:,, V;,,u,u, d/i’ 
/<I 

The sum of the diagonal terms is clearly O(h’). To estimate the second sum we use 
Taylor’s formula to suppress the U, and u, dependence in G”(c) and If:/, and get 

r;,i [ G;; + G,;(pu, + quj) + O(uf + u;)] 

x V$,[ Vi,,, + ru, + O(uf)] uiu, dp” = O(h’), 
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because G,;, G,:, p, q, r do not depend on ui or uj, and the terms with uiu,, uf u,, 
u,uf vanish after integration. This implies that j G”df = O(h*). The main con- 
tribution to R2 must therefore come from j G”c:v*. Indeed, we have 

; j- G”(a) cfv* d/P =;T j” G”(a)( V;,,)‘dp” 

+; C { G”(a) V:,, VI;, dp”. 
((1 

The first sum is clearly O(h*). To evaluate the second sum we use Taylor’s formula 
to suppress u, and u, in G” and V$, and obtain 

,‘&-O(h’)=; 1 j [G~+G:;‘(pu,+qu,)+O(uf+u:)l 
I<, 

x v::,[ v;!,, + ru, + O(uf)l dp” (8) 

G,; I’:,, V;,,idp” + O(h*). 

Finally we attack R, in (7). Using the definition of p, we get 

The sum over the diagonal terms is O(h’). If we use Taylor’s formula to suppress u, 
in G;’ and I$, then the last sum equals 

x I’:,,[ Vi!,, +- rui + O(uf)] dp” (9) 

Gt:‘V:,i V;/,,dp” + O(h”). 
ICI 

It follows from (8) and (9) that R, - R2 = O(h’). The remainder (7) is therefore of 
order 11’. This completes the proof. 
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NUMERICAL EXPERIMENTS 

In the proof G and V were smooth functions. We now set G(u) = u and V(x) = 
1.~1’ and consider the Wiener integral 

J= j j’ V(x(t)) dt dW. 
<’ 0 

Since x(t) is a gaussian random variable with mean zero and variance t we find 
after interchanging the order of integration and using a change of variables that 

The next step is to show that the quadrature formula by Vent-tsel’, Gladyshev and 
Mit’shteyn [S] can be written as 

Thus J, is the integral in (10) evaluated by the trapezoidal rule. We observe first 
that x(,j) - x(,j- 1) for j= 1, 2,..., are independent gaussian random variables with 
mean zero and variance one. This implies that 

Since the left-hand side of this equation is equal to 

we have completed the proof of (11). For Chorin’s quadrature formula one obtains 

(13) 
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This shows that J, is the integral in (10) evaluated by the midpoint rule. As in the 
derivation of (12) we see that 

The left-hand side is also equal to 

Here we have used the change of variables J= (.u + u/,:5)/,,/- and 2 = 
--X.Y + jr where u = I /Jm and j? = 2(i - 1)/(2i- 1). Since the last 
integral is equal to one we have proved (13). We can now set V(.r) = 1 x 1’ in (lo), 
(II) and (13) and get 

J= C(1 +1./2) ‘, 

J? = CII (I+,?) i (i-&d, 
i- I 

where C= (2/n)’ ’ 2’ ’ F’( (1 + 1.)/2) and f denote the Gamma function. The 
problem has therefore been reduced to studying the accuracy of the trapezoidal rule 
and the midpoint rule applied to the integral f,!, t”’ dt. If i = 2 then both quadrature 
formulas give the exact value. 

Table I shows that the relative error in Chorin’s formula is less than the relative 

TABLE I 

Relative Errors: (J, - J),iJ for i = 1 

II Trapezoidal Midpoint 

I - 0.250,,, ~ 0 0.607,0- 1 
I 0 -0.924,,,-2 0.258,,-2 

loo -0.306,,,-3 0X2,,,-4 
1000 -0.980,,,-5 0.286,,>-5 
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TABLE II 

Asymptotic Error Constants: ,’ + ’ ‘* Relative Errol 

,I L = .ot i. = I ;. = 1.0 

I 0.152,,,-2 0.142,,,- 1 0.607,,,- 1 
IO 0.170,,,-2 0.161 ,(,-I 0.x15,,,- 1 

100 0.172,,,-2 0.163,,,- 1 0882 - ,,, I 
1000 0.172,,,-2 0.163,,,-I 0.903 - ,() I 

error in the formula of Vent-tsel’, Gladyshev, and Mit’shteyn [S]. Note that the 
functional is Lipschitz continuous for 1, = I, and differentiable if i. > I. 

It follows from Table II that the rate of convergence for the midpoint rule is 
II ” +’ ‘) and the trapezoidal rule behaves similarly. This can also be proved 
analytically as long as 0 < 3. < 2. Thus the rate of convergence is not quadratic 
unless the functional is several times differentiable. Once is not enough. 
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